ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В пространстве даны две пересекающиеся сферы разных радиусов и точка A, принадлежащая обеим сферам. Докажите, что в пространстве существует точка B, обладающая следующим свойством: если через точки A и B провести произвольную окружность, то точки ее повторного пересечения с данными сферами будут равноудалены от B. ![]() ![]() Как будет выглядеть формула n-го члена для рекуррентной последовательности k-го порядка, если ![]() ![]() ![]() Одна из диагоналей вписанного в окружность четырёхугольника является диаметром. ![]() ![]() |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 102]
Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.
Рассматривается последовательность слов, состоящих из букв "A" и "B".
Первое слово в последовательности – "A", k-е слово получается из (k–1)-го с помощью следующей операции: каждое "A" заменяется на "AAB", каждое "B" – на "A". Легко видеть, что каждое слово является началом следующего, тем самым получается бесконечная последовательность букв: AABAABAAABAABAAAB...
0110 1001 1001 0110 1001...
построена по следующему правилу. Сначала написан нуль. Затем
делается бесконечное количество шагов. На каждом шаге к уже
написанному куску последовательности приписывается новый кусок
той же длины, получаемый из него заменой всех нулей единицами, а
единиц — нулями.
а) Какая цифра стоит на 2001 месте? б) Будет ли эта последовательность, начиная с некоторого места, периодической? в) Докажите, что данная последовательность переходит в себя при замене каждого нуля на комбинацию 01, а каждой единицы — на комбинацию 10. г) Докажите, что ни одно конечно слово из нулей и единиц не встречается в последовательности Морса три раза подряд. д) Как, зная представление числа n в двоичной системе счисления, найти n-й элемент данной последовательности?
Найдите остаток от деления 2100 на 3.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 102] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |