Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 79]
Саша разрезал бумажный треугольник на два треугольника. Затем он каждую минуту резал на два треугольника один из полученных ранее треугольников. Через некоторое время, не меньшее часа, все полученные Сашей треугольники оказались равными. Укажите все исходные треугольники, для которых возможна такая ситуация.
|
|
Сложность: 4- Классы: 10,11
|
Провести из точки
O n лучей на плоскости так, чтобы сумма всех попарных
углов между ними была наибольшей. (Рассматриваются только углы, не превышающие
180
o.)
|
|
Сложность: 4 Классы: 8,9,10
|
В выпуклом n-угольнике проведено несколько диагоналей. Проведённая диагональ называется хорошей, если она пересекается (по внутренним точкам) ровно с одной из других проведённых диагоналей. Найдите наибольшее возможное количество хороших диагоналей.
|
|
Сложность: 4+ Классы: 7,8,9
|
Несколько кругов одного радиуса положили на
стол так, что никакие два не перекрываются. Докажите, что
круги можно раскрасить в четыре цвета так, что любые
два касающихся круга будут разного цвета.
99 прямых разбивают плоскость на
n частей. Найдите все возможные значения
n, меньшие 199.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 79]