Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 62]
Из шахматной доски (размером 8×8) вырезали центральный квадрат размером 2×2.
Можно ли оставшуюся часть доски разрезать на равные фигурки в виде буквы "Г", состоящие из четырёх клеток?
|
|
Сложность: 3+ Классы: 7,8,9
|
Квадрат 8×8 клеток выкрашен в белый цвет. Разрешается выбрать в нём любой
прямоугольник из трёх клеток и перекрасить все их в противоположный цвет (белые
в чёрный, чёрные – в белый). Удастся ли несколькими такими операциями перекрасить весь квадрат в чёрный цвет?
Можно ли замостить доску 2003×2003 доминошками 1×2, которые разрешается располагать только горизонтально, и прямоугольниками 1×3, которые разрешается располагать только вертикально? (Две стороны доски условно
считаются горизонтальными, а две другие – вертикальными.)
|
|
Сложность: 4- Классы: 8,9,10
|
В квадрате 10×10 расставлены числа от 1 до 100: в первой строчке – от 1 до 10 слева направо, во второй – от 11 до 20 слева направо и т.д. Андрей собирается разрезать квадрат на доминошки 1×2, посчитать произведение чисел в каждой доминошке и сложить полученные 50 чисел. Он стремится получить как можно меньшую сумму. Как ему следует разрезать квадрат?
|
|
Сложность: 4 Классы: 8,9,10,11
|
У Пети есть колода из 36 карт (4 масти по 9 карт в каждой). Он выбирает из неё половину карт (какие хочет) и отдаёт Васе, а вторую половину оставляет себе.
Далее каждым ходом игроки по очереди выкладывают на стол по одной карте (по своему выбору, в открытом виде); начинает Петя. Если в ответ на ход Пети Вася смог выложить карту той же масти или того же достоинства, Вася зарабатывает
1 очко. Какое наибольшее количество очков он может гарантированно заработать?
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 62]