Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 239]
На одной из сторон прямого угла даны точки A и B (точка A расположена между вершиной угла и точкой B).
С помощью циркуля и линейки постройте на другой стороне такую точку X, чтобы ∠AXB = 2∠ABX.
Докажите, что среди всех треугольников с данным основанием и высотой, опущенной на это основание, наибольшую величину противолежащего угла имеет равнобедренный треугольник.
|
|
Сложность: 4- Классы: 9,10,11
|
Пусть AL – биссектриса треугольника ABC. Серединный перпендикуляр к отрезкуAL пересекает описанную окружность Ω треугольника ABC, в точках P и Q. Докажите, что описанная окружность треугольника PLQ, касается стороны BC.
|
|
Сложность: 4- Классы: 8,9,10
|
В четырёхугольнике ABCD AB = CD, M и K – середины BC и AD. Докажите, что угол между MK и AC равен полусумме углов BAC и DCA.
Саша разрезал бумажный треугольник на два треугольника. Затем он каждую минуту резал на два треугольника один из полученных ранее треугольников. Через некоторое время, не меньшее часа, все полученные Сашей треугольники оказались равными. Укажите все исходные треугольники, для которых возможна такая ситуация.
Страница:
<< 38 39 40 41
42 43 44 >> [Всего задач: 239]