Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 328]
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что pn+1 ≤ 22n + 1, где pn – n-е простое число.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Докажите следующие свойства чисел Фибоначчи:
а) F1 + F2 +...+ Fn = Fn + 2 - 1; |
в) F2 + F4 +...+ F2n = F2n + 1 - 1; |
б) F1 + F3 +...+ F2n - 1 = F2n; |
г) F12 + F22 +...+ Fn2 = FnFn + 1. |
|
|
Сложность: 3+ Классы: 10,11
|
Докажите, что для любых натуральных m и n хотя бы одно из чисел , не больше .
|
|
Сложность: 3+ Классы: 10,11
|
Существует ли такое значение α, что все члены бесконечной последовательности cos α, cos 2α, ..., cos(2nα), ... принимают отрицательные значения?
|
|
Сложность: 3+ Классы: 8,9,10
|
Сто медвежат нашли в лесу ягоды: самый младший успел схватить 1 ягоду, медвежонок постарше – 2 ягоды, следующий – 4 ягоды, и так далее, самому старшему досталось 299 ягод. Лиса предложила им поделить ягоды "по справедливости". Она может подойти к двум медвежатам и распределить их ягоды поровну между ними, а если при этом возникает лишняя ягода, то лиса её съедает. Такие действия она продолжает до тех пор, пока у всех медвежат не станет ягод поровну. Какое наименьшее количество ягод может оставить медвежатам лиса?
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 328]