ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На биссектрисе острого угла AOC взята точка B. Через точку B проведена прямая, перпендикулярная к OB и пересекающая сторону AO в точке K, а сторону OC – в точке L. Через точку B проведена еще одна прямая, пересекающая сторону AO в точке M (M – между O и K), сторону OC — в точке N, причём так, что  ∠MON = ∠MNO.  Известно, что  MK = a,  LN = 3a/2.  Найдите площадь треугольника MON.

Вниз   Решение


Какое наименьшее число ладей нужно поставить на шахматную доску 8×8, чтобы все белые клетки были под боем этих ладей? (Под боем ладьи считаются все клетки строки и столбца, в которых находится ладья.)

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A.

ВверхВниз   Решение


Автор: Фольклор

Внутри окружности расположен равносторонний N-угольник. Каждую его сторону продлевают в обе стороны до пересечения с окружностью, получая по два новых отрезка, расположенных вне многоугольника. Затем некоторые из 2N полученных отрезков красятся в красный цвет, а остальные – в синий цвет. Докажите, что можно раскрасить эти отрезки так, чтобы сумма длин красных отрезков равнялась сумме длин синих.

ВверхВниз   Решение


Периметр треугольника равен 28, середины сторон соединены отрезками. Найдите периметр полученного треугольника.

ВверхВниз   Решение


В течение года цены на штрюдели два раза поднимали на 50%, а перед Новым Годом их стали продавать за полцены.
Сколько стоит сейчас один штрюдель, если в начале года он стоил 80 рублей?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 225]      



Задача 110815

Темы:   [ Гомотетия помогает решить задачу ]
[ Симметрия помогает решить задачу ]
[ Касающиеся окружности ]
Сложность: 4
Классы: 8,9

Через центр O окружности Σ , описанной около треугольника ABC , проведена прямая, параллельная BC и пересекающая стороны AB и AC в точках B1 и C1 соответственно. Окружность σ проходит через точки B1 и C1 и касается Σ в точке K . Найдите угол между прямыми AK и BC . Найдите площадь треугольника ABC и радиус окружности Σ , если BC=8 , AK=5 , B1C1=5 .
Прислать комментарий     Решение


Задача 111620

Темы:   [ Гомотетия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4
Классы: 8,9

Окружность σ касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L . Отрезок AK пересекает σ второй раз в точке M . Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности σ .
Прислать комментарий     Решение


Задача 111860

Темы:   [ Гомотетия помогает решить задачу ]
[ Три точки, лежащие на одной прямой ]
[ Биссектриса делит дугу пополам ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 9,10

Автор: Исаев М.

Окружность проходит через вершины B и C треугольника ABC и пересекает стороны AB и AC в точках D и E соответственно. Отрезки CD и BE пересекаются в точке O. Пусть M и N – центры окружностей, вписанных соответственно в треугольники ADE и ODE. Докажите, что середина меньшей дуги DE лежат на прямой MN.

Прислать комментарий     Решение

Задача 115341

Темы:   [ Гомотетия помогает решить задачу ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9

Дан вписанный четырёхугольник ABCD . Пусть s1 — окружность, проходящая через точки A и B и касающаяся прямой AC , а s2 — окружность, проходящая через точки C и D и касающаяся AC . Докажите, что прямые AC , BD и вторая общая внутренняя касательная к окружностям s1 и s2 проходят через одну точку.
Прислать комментарий     Решение


Задача 115723

Темы:   [ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
Сложность: 4
Классы: 8,9

На окружности, касающейся сторон угла с вершиной O , выбраны две диаметрально противоположные точки A и B (отличные от точек касания). Касательная к окружности в точке B пересекает стороны угла в точках C и D , а прямую OA — в точке E . Докажите, что BC=DE .
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 225]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .