ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 64]      



Задача 57072

Темы:   [ Правильные многоугольники ]
[ Теоремы Чевы и Менелая ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4-
Классы: 9,10,11

В правильном восемнадцатиугольнике A0...A17 проведены диагонали A0Ap+3, Ap+1A18–r и A1Ap+q+3.
Докажите, что указанные диагонали пересекаются в одной точке в любом из следующих случаев:
  а)  {p, q, r} = {1, 3, 4},
  б)  {p, q, r} = {2, 2, 3}.

Прислать комментарий     Решение

Задача 57004

Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Взаимное расположение двух окружностей ]
[ Применение тригонометрических формул (геометрия) ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Углы треугольника ABC удовлетворяют соотношению  sin²A + sin²B + sin²C = 1.
Докажите, что его описанная окружность и окружность девяти точек пересекаются под прямым углом.

Прислать комментарий     Решение

Задача 79501

Темы:   [ Неравенства с биссектрисами ]
[ Теорема синусов ]
[ Применение тригонометрических формул (геометрия) ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 9,10,11

Биссектриса угла A треугольника ABC продолжена до пересечения в D с описанной вокруг него окружностью. Докажите, что AD > 1/2 (AB + AC).
Прислать комментарий     Решение


Задача 111266

Темы:   [ Симметричные неравенства для углов треугольника ]
[ Неравенства для углов треугольника ]
[ Применение тригонометрических формул (геометрия) ]
[ Тригонометрические неравенства ]
[ Теорема синусов ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Неравенства с медианами ]
Сложность: 4+
Классы: 9,10,11

Докажите, что если α , β и γ – углы остроугольного треугольника, то sinα + sinβ + sinγ > 2 .
Прислать комментарий     Решение


Задача 58017

Темы:   [ Поворотная гомотетия ]
[ Гомотетия: построения и геометрические места точек ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 5-
Классы: 9,10,11

Дана полуокружность с диаметром AB. Для каждой точки X этой полуокружности на луче XA откладывается точка Y так, что XY = kXB. Найдите ГМТ Y.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 64]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .