ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что если A, B, C и D — произвольные точки плоскости, то AB . CD + BC . AD б) Докажите, что если A1, A2, ...A6 — произвольные точки плоскости, то в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда и только тогда, когда ABCD — (выпуклый) вписанный четырехугольник. г) Докажите, что неравенство из задачи б) обращается в равенство тогда и только тогда, когда A1...A6 — вписанный шестиугольник. ![]() ![]() Проекцией точки A из точки O на плоскость P называется точка A', в которой прямая OA пересекает плоскость P. Проекцией треугольника называется фигура, состоящая из всех проекций его точек. Какими фигурами может быть проекция треугольника, если точка O не лежит в его плоскости? ![]() ![]() ![]() В треугольнике провести прямую, параллельную одной из сторон, так, чтобы площадь отсечённого треугольника равнялась 1/k площади данного треугольника (k – натуральное число), а оставшуюся часть треугольника разделить прямыми на p равновеликих частей. (Предполагается, что у нас есть отрезок единичной длины.) ![]() ![]() ![]() Дан тетраэдр $ABCD$. Прямая $\ell$ пересекает плоскости $ABC$, $BCD$, $CDA$, $DAB$ в точках $D_0$, $A_0$, $B_0$, $C_0$ соответственно. Пусть $P$ – произвольная точка, не лежащая на прямой $\ell$ и в плоскостях граней тетраэдра, а $A_1$, $B_1$, $C_1$, $D_1$ – вторые точки пересечения прямых $PA_0$, $PB_0$, $PC_0$, $PD_0$ со сферами $PBCD$, $PCDA$, $PDAB$, $PABC$ соответственно. Докажите, что $P$, $A_1$, $B_1$, $C_1$, $D_1$ лежат на одной окружности. ![]() ![]() |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 102]
Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.
Рассматривается последовательность слов, состоящих из букв "A" и "B".
Первое слово в последовательности – "A", k-е слово получается из (k–1)-го с помощью следующей операции: каждое "A" заменяется на "AAB", каждое "B" – на "A". Легко видеть, что каждое слово является началом следующего, тем самым получается бесконечная последовательность букв: AABAABAAABAABAAAB...
0110 1001 1001 0110 1001...
построена по следующему правилу. Сначала написан нуль. Затем
делается бесконечное количество шагов. На каждом шаге к уже
написанному куску последовательности приписывается новый кусок
той же длины, получаемый из него заменой всех нулей единицами, а
единиц — нулями.
а) Какая цифра стоит на 2001 месте? б) Будет ли эта последовательность, начиная с некоторого места, периодической? в) Докажите, что данная последовательность переходит в себя при замене каждого нуля на комбинацию 01, а каждой единицы — на комбинацию 10. г) Докажите, что ни одно конечно слово из нулей и единиц не встречается в последовательности Морса три раза подряд. д) Как, зная представление числа n в двоичной системе счисления, найти n-й элемент данной последовательности?
Найдите остаток от деления 2100 на 3.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 102] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |