ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В хоккейном турнире принимают участие n команд. Каждая команда встречается с каждой по одному разу, при этом выигравшей команде присуждается 2 очка, сыгравшей вничью – 1, проигравшей – 0 очков. Какой максимальный разрыв в очках может быть между командами, занявшими соседние места? ![]() ![]() Пусть точки A1, B1 и C1 принадлежат сторонам соответственно BC, AC и AB треугольника ABC. ![]() ![]() ![]()
Даны прямая l и точки A и B по одну сторону от неё.
Постройте путь луча из A в B, который отражается от прямой l по
следующему закону: угол падения на
![]() ![]() ![]() На окружности отметили n точек, разбивающие её на n дуг. Окружность повернули вокруг центра на угол 2πk/n (при некотором натуральном k), в результате чего отмеченные точки перешли в n новых точек, разбивающих окружность на n новых дуг. ![]() ![]() |
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 368]
Пусть k и n – натуральные числа, k ≤ n. Расставьте первые n² натуральных чисел в таблицу n×n так, чтобы в каждой строке числа шли в порядке возрастания и при этом сумма чисел в k-м столбце была а) наименьшей; б) наибольшей.
Из клетчатой бумаги вырезан квадрат 17×17. В клетках квадрата произвольным образом написаны числа 1, 2, 3, ..., 70 по одному и только одному числу в каждой клетке. Доказать, что существуют такие четыре различные клетки с центрами в точках A, B, C, D, что AB = CD, AD = BC и сумма чисел, стоящих в клетках с центрами в A и C, равна сумме чисел в клетках с центрами B и D.
На кошачьей выставке в ряд сидят 10 котов и 19 кошек, причём рядом с каждой кошкой сидит более толстый кот.
На фестивале камерной музыки собралось шесть музыкантов. На каждом концерте часть музыкантов выступает, а остальные слушают их из зала. За какое наименьшее число концертов каждый из шести музыкантов сможет послушать (из зала) всех остальных?
Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 368] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |