ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 367]      



Задача 65508

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 7,8,9

В каждой клетке таблицы размером 13×13 записано одно из натуральных чисел от 1 до 25. Клетку назовём хорошей, если среди двадцати пяти чисел, записанных в ней и во всех клетках одной с ней горизонтали и одной с ней вертикали, нет одинаковых. Могут ли все клетки одной из главных диагоналей оказаться хорошими?

Прислать комментарий     Решение

Задача 65859

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

Юра и Яша имеют по экземпляру одной и той же клетчатой таблицы 5×5, заполненной 25 различными числами. Юра выбирает наибольшее число в таблице и вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее из оставшихся чисел и вычёркивает строку и столбец, содержащие это число, и т.д. Яша производит аналогичные действия, но выбирает наименьшие числа. Может ли случиться, что сумма чисел, выбранных Яшей
  a) больше суммы чисел, выбранных Юрой?
  б) больше суммы любых других пяти чисел исходной таблицы, удовлетворяющих условию: никакие два из них не стоят в одной строке или в одном столбце?

Прислать комментарий     Решение

Задача 73598

Темы:   [ Замощения костями домино и плитками ]
[ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 7,8,9

Можно ли из 18 плиток размером 1×2 выложить квадрат так, чтобы при этом не было ни одного прямого "шва", соeдиняющего противоположные стороны квадрата и идущего по краям плиток? Например, такое расположение плиток, как на рисунке, не годится, так как здесь есть красный "шов".

Прислать комментарий     Решение

Задача 76547

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 7,8,9

Из двухсот чисел: 1, 2, 3, 4, 5, 6, 7, ..., 199, 200 произвольно выбрали сто одно число.
Доказать, что среди выбранных чисел найдутся два, из которых одно делится на другое.

Прислать комментарий     Решение

Задача 98214

Темы:   [ Теория алгоритмов (прочее) ]
[ Итерации ]
[ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9,10

В каждой целой точке числовой оси расположена лампочка с кнопкой, при нажатии которой лампочка меняет состояние – загорается или гаснет. Вначале все лампочки погашены. Задано конечное множество целых чисел – шаблон S. Его можно перемещать вдоль числовой оси как жесткую фигуру и, приложив в любом месте, поменять состояние множества всех лампочек, закрытых шаблоном. Докажите, что при любом S за несколько операций можно добиться того, что будут гореть ровно две лампочки.

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .