Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 368]
|
|
Сложность: 4- Классы: 10,11
|
На шкуре у Носорога складки – вертикальные и горизонтальные.
Если у Носорога на левом боку a вертикальных, b горизонтальных складок, а на правом – c вертикальных и d горизонтальных, будем говорить, что это Носорог в состоянии (abcd)
или просто Носорог (abcd).
Если Носорог чешется каким-то боком о баобаб вверх-вниз, и у Носорога на этом боку есть две горизонтальные складки, то эти две горизонтальные складки
разглаживаются. Если двух таких складок нет, то ничего не происходит.
Аналогично если Носорог чешется боком вперед-назад, и на этом боку есть две вертикальные складки, то они разглаживаются, если же таких двух складок не найдётся, то ничего не происходит.
Если на каком-то боку две какие-то складки разглаживаются, то на другом боку немедленно появляется две новые складки: одна вертикальная и одна горизонтальная.
Носороги чешутся часто, случайным боком о случайные баобабы в случайных направлениях.
Вначале в саванне было стадо Носорогов (0221). Докажите, что через некоторое время в саванне появится Носорог (2021).
|
|
Сложность: 4- Классы: 7,8,9
|
В каждой клетке таблицы размером 13×13 записано одно из натуральных чисел от 1 до 25. Клетку назовём хорошей, если среди двадцати пяти чисел,
записанных в ней и во всех клетках одной с ней горизонтали и одной с ней вертикали, нет одинаковых. Могут ли все клетки одной из главных диагоналей
оказаться хорошими?
|
|
Сложность: 4- Классы: 8,9,10
|
Юра и Яша имеют по экземпляру одной и той же клетчатой таблицы 5×5, заполненной 25 различными числами. Юра выбирает наибольшее число в таблице и вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее из оставшихся чисел и вычёркивает строку и столбец, содержащие это число, и т.д. Яша производит аналогичные действия, но выбирает наименьшие числа. Может ли случиться, что сумма чисел, выбранных Яшей
a) больше суммы чисел, выбранных Юрой?
б) больше суммы любых других пяти чисел исходной таблицы, удовлетворяющих условию: никакие два из них не стоят в одной строке или в одном столбце?
|
|
Сложность: 4- Классы: 7,8,9
|
Можно ли из 18 плиток размером 1×2 выложить квадрат так, чтобы при этом не было ни одного прямого "шва", соeдиняющего противоположные стороны квадрата и идущего по краям плиток? Например, такое расположение плиток, как на рисунке, не годится, так как здесь есть красный "шов".
|
|
Сложность: 4- Классы: 7,8,9
|
Из двухсот чисел: 1, 2, 3, 4, 5, 6, 7, ..., 199, 200 произвольно выбрали сто
одно число.
Доказать, что среди выбранных чисел найдутся два, из которых одно
делится на другое.
Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 368]