Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 354]
|
|
Сложность: 4- Классы: 8,9,10
|
a1,
a2, ...,
an — произвольные натуральные числа. Обозначим через
bk количество чисел из набора
a1,
a2, ...,
an, удовлетворяющих условию:
ai ≥
k.
Доказать, что
a1 +
a2 + ... +
an =
b1 +
b2 + ...
|
|
Сложность: 4- Классы: 10,11
|
Существует ли такая сфера, на которой имеется ровно одна рациональная точка? (Рациональная точка – точка, у которой все три декартовы координаты – рациональные числа.)
|
|
Сложность: 4- Классы: 10,11
|
Положительные числа A, B, C и D таковы, что система уравнений
x² + y² = A,
|x| + |y| = B
имеет m решений, а система уравнений
x² + y² + z² = C,
|x| + |y| + |z| = D
имеет n решений. Известно, что m > n > 1. Найдите m и n.
На доске написано несколько целых положительных чисел: a0, a1, a2, ... , an. Пишем на другой доске следующие числа: b0 – сколько всего чисел на первой доске, b1 – сколько там чисел, больших единицы, b2 – сколько чисел, больших двойки, и т.д., пока получаются положительные числа. На этом заканчиваем – нули не пишем. На третьей доске пишем числа c0, c1, c2, ... , построенные по числам второй доски по тому же правилу, по которому числа b0, b1, b2, ... строились по числам первой доски. Докажите, что наборы чисел на первой и третьей досках совпадают.
|
|
Сложность: 4- Классы: 9,10,11
|
Может ли сумма тангенсов углов одного треугольника
равняться сумме тангенсов углов другого, если один из этих треугольников
остроугольный, а другой тупоугольный?
Страница:
<< 37 38 39 40
41 42 43 >> [Всего задач: 354]