Страница:
<< 25 26 27 28 29 30 31 >> [Всего задач: 629]
Куб 3×3×3 составлен из 14 белых и 13 чёрных кубиков со стороной
1. Столбик – это три кубика, стоящих рядом вдоль одного направления:
ширины, длины или высоты. Может ли быть так, что в каждом столбике
а) нечётное количество белых кубиков?
б) нечётное количество чёрных кубиков?
|
|
Сложность: 3+ Классы: 7,8,9
|
По кругу расставлены 2005 натуральных чисел.
Доказать, что найдутся два соседних числа, после выкидывания которых оставшиеся числа нельзя разбить на две группы с равной суммой.
Рассматриваются всевозможные пары (a, b) натуральных чисел, где a < b. Некоторые пары объявляются чёрными, остальные – белыми.
Можно ли это сделать так, чтобы для любых натуральных a и d среди пар (a, a + d), (a, a + 2d), (a + d, a + 2d) встречались и чёрные, и белые?
а) Может ли случиться, что в компании из 10 девочек и 9 мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?
б) А если девочек 11, а мальчиков 10?
Несколько последовательных натуральных чисел выписали в строку в таком порядке,
что сумма каждых трёх подряд идущих чисел делится на самое левое число
этой тройки. Какое максимальное количество чисел могло быть выписано, если
последнее число строки нёчётно?
Страница:
<< 25 26 27 28 29 30 31 >> [Всего задач: 629]