ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В выпуклом пятиугольнике ABCDE диагонали AD и BD являются биссектрисами углов при вершинах A и B соответственно,  ∠C = 115°,  ∠E = 65°,  а площадь треугольника ABD равна 13. Найдите площадь пятиугольника ABCDE.

   Решение

Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 148]      



Задача 55016

Темы:   [ Подобные треугольники (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Трапеции (прочее) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD точка E – пересечение диагоналей. Известно, что площадь каждого из треугольников ABE и DCE равна 7, а площадь всего четырёхугольника не превосходит 28;   AD = .  Найдите сторону BC.

Прислать комментарий     Решение

Задача 98329

Темы:   [ Шестиугольники ]
[ Средняя линия трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 10,11

Пусть A', B', C', D', E', F' – середины сторон AB, BC, CD, DE, EF, FA произвольного выпуклого шестиугольника ABCDEF. Известны площади треугольников ABC', BCD', CDE', DEF', EFA', FAB'. Найдите площадь шестиугольника ABCDEF.

Прислать комментарий     Решение

Задача 102459

Темы:   [ Вспомогательные равные треугольники ]
[ Симметрия помогает решить задачу ]
[ Пятиугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

В выпуклом пятиугольнике ABCDE диагонали BE и CE являются биссектрисами углов при вершинах B и C соответственно,  ∠A = 35°,  ∠D = 145°,  а площадь треугольника BCE равна 11. Найдите площадь пятиугольника ABCDE.

Прислать комментарий     Решение

Задача 102460

Темы:   [ Вспомогательные равные треугольники ]
[ Симметрия помогает решить задачу ]
[ Пятиугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

В выпуклом пятиугольнике ABCDE диагонали AC и AD являются биссектрисами углов при вершинах C и D соответственно,  ∠B = 25°,  ∠E = 155°,  а площадь пятиугольника ABCDE равна 12. Найдите площадь треугольника ACD.

Прислать комментарий     Решение

Задача 102461

Темы:   [ Вспомогательные равные треугольники ]
[ Симметрия помогает решить задачу ]
[ Пятиугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

В выпуклом пятиугольнике ABCDE диагонали AD и BD являются биссектрисами углов при вершинах A и B соответственно,  ∠C = 115°,  ∠E = 65°,  а площадь треугольника ABD равна 13. Найдите площадь пятиугольника ABCDE.

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 148]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .