ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Площадь трапеции ABCD с основаниями AD и BC (AD > BC) равна 48, а площадь треугольника AOB, где O — точка пересечения диагоналей трапеции, равна 9. Найдите отношение оснований трапеции AD : BC.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 166]      



Задача 102373

Темы:   [ Подобные треугольники (прочее) ]
[ Трапеции (прочее) ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 8,9

На основаниях AD и BC трапеции ABCD построены квадраты ADMN и BCRS, расположенные вне трапеции. Диагонали трапеции пересекаются в точке T. Найдите длину отрезка RN, если  AD = 8,  BC = 3,  а  TN = 20.

Прислать комментарий     Решение

Задача 102483

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Площадь трапеции ABCD с основаниями AD и BC (AD > BC) равна 48, а площадь треугольника AOB, где O — точка пересечения диагоналей трапеции, равна 9. Найдите отношение оснований трапеции AD : BC.

Прислать комментарий     Решение


Задача 102484

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Площадь трапеции ABCD с основаниями AD и BC (AD > BC) равна 128, а площадь треугольника BOC, где O — точка пересечения диагоналей трапеции, равна 2. Найдите площадь треугольника AOD.

Прислать комментарий     Решение


Задача 108503

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Точки M и N находятся на боковых сторонах AB и CD трапеции ABCD, прямая MN параллельна AD, а отрезок MN делится диагоналями трапеции на три равные части. Найдите длину отрезка MN, если  AD = a,  BC = b,  а точка пересечения диагоналей трапеции лежит внутри четырёхугольника MBCN.

Прислать комментарий     Решение

Задача 52634

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

В равнобедренной трапеции угол при основании равен 50o, а угол между диагоналями, обращенный к боковой стороне, равен 40o. Где лежит центр описанной окружности, внутри или вне трапеции?

Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 166]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .