ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Васе на 23 февраля подарили 777 конфет. Вася хочет съесть все конфеты за n дней, причем так, чтобы каждый из этих дней (кроме первого, но включая последний) съедать на одну конфету больше, чем в предыдущий. Для какого наибольшего числа n это возможно?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 191]      



Задача 105203

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
Сложность: 3-
Классы: 8,9

Васе на 23 февраля подарили 777 конфет. Вася хочет съесть все конфеты за n дней, причем так, чтобы каждый из этих дней (кроме первого, но включая последний) съедать на одну конфету больше, чем в предыдущий. Для какого наибольшего числа n это возможно?

Прислать комментарий     Решение

Задача 34929

Тема:   [ Арифметическая прогрессия ]
Сложность: 3

Натуральный ряд разбит на n арифметических прогрессий (каждое натуральное число принадлежит ровно одной из этих n прогрессий). Пусть d1, d2, ..., dn – разности этих прогрессий. Докажите, что   1/d1 + 1/d2 + ... + 1/dn = 1.

Прислать комментарий     Решение

Задача 34998

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9,10

Натуральный ряд 1, 2, 3, ... разбит на несколько (конечное число) арифметических прогрессий.
Докажите, что хотя бы у одной из этих прогрессий первый член делится на разность.

Прислать комментарий     Решение

Задача 35018

Тема:   [ Геометрическая прогрессия ]
Сложность: 3
Классы: 8,9

Найдите сумму 6+66+666+...+666..6, где в записи последнего числа присутствуют n шестерок.
Прислать комментарий     Решение


Задача 35408

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 8,9,10

Докажите, что в любой арифметической прогрессии, состоящей из натуральных чисел, найдутся два члена с одинаковой суммой цифр.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 191]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .