ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Стереометрия
>>
Параллелепипеды
>>
Частные случаи параллелепипедов
>>
Куб
Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Шестью одинаковыми параллелограммами площади 1 оклеили кубик с ребром 1. Можно ли утверждать, что все параллелограммы — квадраты? Можно ли утверждать, что все они — прямоугольники? Решение |
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 204]
Куб 3×3×3 составлен из 14 белых и 13 чёрных кубиков со стороной
1. Столбик – это три кубика, стоящих рядом вдоль одного направления:
ширины, длины или высоты. Может ли быть так, что в каждом столбике
а) Можно ли расположить пять деревянных кубов в пространстве так, чтобы
каждый имел общую часть грани с каждым? (Общая часть должна быть многоугольником.)
Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?
В пространстве даны восемь параллельных плоскостей таких, что расстояния между каждыми двумя соседними равны. На каждой из плоскостей выбирается по точке. Могут ли выбранные точки оказаться вершинами куба.
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 204] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|