ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Диагонали трапеции ABCD пересекаются в точке K. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка K лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки K, равны. ![]() |
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 1024]
В треугольнике ABC угол A равен α, BC = a. Вписанная окружность касается прямых AB и AC в точках M и P.
Диагонали трапеции ABCD пересекаются в точке K. На боковых сторонах трапеции, как на диаметрах, построены окружности. Точка K лежит вне этих окружностей. Докажите, что длины касательных, проведённых к этим окружностям из точки K, равны.
Три окружности ω1, ω2 и ω3 радиуса r проходят через точку S и касаются внутренним образом окружности ω радиуса R (R > r) в точках T1, T2 и T3 соответственно. Докажите, что прямая T1T2 проходит через вторую (отличную от S) точку пересечения окружностей ω1 и ω2.
Дана окружность Ω и точка P вне её. Проходящая через точку P прямая l пересекает окружность в точках A и B. На отрезке AB отмечена такая точка C, что PA·PB = PC². Точки M и N – середины двух дуг, на которые хорда AB разбивает окружность Ω. Докажите, что величина угла MCN не зависит от выбора прямой l.
Диагонали трапеции ABCD с основаниями AD = 3 и BC = 1 пересекаются в точке O. Две окружности, пересекающие основание BC в точках K и L соответственно, касаются друг друга в точке O, а прямой AD – в точках A и D соответственно. Найдите AK² + DL².
Страница: << 53 54 55 56 57 58 59 >> [Всего задач: 1024] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |