ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В стране Нашии есть военные базы, соединённые дорогами. Набор дорог называется важным, если после закрытия этих дорог найдутся две базы, не соединённые путем. Важный набор называется стратегическим, если он не содержит меньшего важного набора. Докажите, что множество дорог, каждая из которых принадлежит ровно одному из двух различных стратегических наборов, образует важный набор.

   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



Задача 22001

Темы:   [ Принцип Дирихле (прочее) ]
[ Объединение, пересечение и разность множеств ]
Сложность: 4
Классы: 7,8,9

11 пионеров занимаются в пяти кружках дома культуры. Докажите, что найдутся два пионера А и В такие, что все кружки, которые посещает А, посещает и В.

Прислать комментарий     Решение


Задача 107854

Темы:   [ Связность и разложение на связные компоненты ]
[ Объединение, пересечение и разность множеств ]
Сложность: 4
Классы: 8,9,10

В стране Нашии есть военные базы, соединённые дорогами. Набор дорог называется важным, если после закрытия этих дорог найдутся две базы, не соединённые путем. Важный набор называется стратегическим, если он не содержит меньшего важного набора. Докажите, что множество дорог, каждая из которых принадлежит ровно одному из двух различных стратегических наборов, образует важный набор.

Прислать комментарий     Решение

Задача 79340

Темы:   [ Выпуклые многоугольники ]
[ Объединение, пересечение и разность множеств ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
[ Комбинаторная геометрия (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10

Найти наименьшее n такое, что любой выпуклый 100-угольник можно получить в виде пересечения n треугольников. Докажите, что для меньших n это можно сделать не с любым выпуклым 100-угольником.
Прислать комментарий     Решение


Задача 109738

Темы:   [ Системы отрезков, прямых и окружностей ]
[ Объединение, пересечение и разность множеств ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 4+
Классы: 8,9,10

Автор: Карасев Р.

На прямой выбрано 100 множеств A1, A2, .. , A100 , каждое из которых является объединением 100 попарно непересекающихся отрезков. Докажите, что пересечение множеств A1, A2, .. , A100 является объединением не более 9901 попарно непересекающихся отрезков (точка также считается отрезком).
Прислать комментарий     Решение


Задача 116782

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
[ Объединение, пересечение и разность множеств ]
Сложность: 3
Классы: 5,6

Двенадцать малышей вышли во двор играть в песочнице. Каждый, кто принёс ведёрко, принёс и совочек. Забыли дома ведёрко девять малышей, забыли дома совочек двое. На сколько меньше малышей, которые принесли ведёрко, чем тех, которые принесли совочек, но забыли ведёрко?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .