ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На биссектрисе острого угла AOC взята точка B. Через точку B проведена прямая, перпендикулярная к OB и пересекающая сторону AO в точке K, а сторону OC – в точке L. Через точку B проведена еще одна прямая, пересекающая сторону AO в точке M (M – между O и K), сторону OC — в точке N, причём так, что  ∠MON = ∠MNO.  Известно, что  MK = a,  LN = 3a/2.  Найдите площадь треугольника MON.

Вниз   Решение


Какое наименьшее число ладей нужно поставить на шахматную доску 8×8, чтобы все белые клетки были под боем этих ладей? (Под боем ладьи считаются все клетки строки и столбца, в которых находится ладья.)

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



Задача 56468

Темы:   [ Биссектриса угла (ГМТ) ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены биссектрисы AA1 и BB1.
Докажите, что расстояние от любой точки M отрезка A1B1 до прямой AB равно сумме расстояний от M до прямых AC и BC.

Прислать комментарий     Решение

Задача 101885

Темы:   [ Биссектриса угла (ГМТ) ]
[ Вспомогательные равные треугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Точка O лежит на диагонали AC выпуклого четырёхугольника ABCD. Известно, что  OC = OD  и что точка O одинаково удалена от прямых DA, AB и BC. Найдите углы четырёхугольника, если  ∠AOB = 110°  и ∠COD = 90°.

Прислать комментарий     Решение

Задача 101886

Темы:   [ Биссектриса угла (ГМТ) ]
[ Вспомогательные равные треугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3+
Классы: 8,9

Точка O лежит на диагонали KM выпуклого четырёхугольника KLMN. Известно, что  OM = ON  и что точка O одинаково удалена от прямых NK, KL и LM. Найдите углы четырёхугольника, если  ∠LOM = 55°  и  ∠KON = 90°.

Прислать комментарий     Решение

Задача 108078

Темы:   [ Биссектриса угла (ГМТ) ]
[ Вневписанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение, в котором биссектриса делит сторону ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены биссектрисы AD и BE. Известно, что DE – биссектриса угла ADC. Найдите величину угла A.

Прислать комментарий     Решение

Задача 108197

Темы:   [ Биссектриса угла (ГМТ) ]
[ Средняя линия треугольника ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC провели биссектрисы углов A и C. Точки P и Q – основания перпендикуляров, опущенных из вершины B на эти биссектрисы. Докажите, что отрезок PQ параллелен стороне AC.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .