ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Сонкин М.

Точки O1 и O2 – центры описанной и вписанной окружностей равнобедренного треугольника ABC  (AB = BC).  Описанные окружности треугольников ABC и O1O2A, пересекаются в точках A и D. Докажите, что прямая BD касается описанной окружности треугольника O1O2A.

   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 239]      



Задача 108110

Темы:   [ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Пересекающиеся окружности ]
[ Признаки и свойства касательной ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 7,8,9

Автор: Сонкин М.

Окружность S с центром O и окружность S' пересекаются в точках A и B. На дуге окружности S, лежащей внутри S', взята точка C. Точки пересечения прямых AC и BC с S', отличные от A и B, обозначим через E и D соответственно. Докажите, что прямые DE и OC перпендикулярны.

Прислать комментарий     Решение

Задача 115284

Темы:   [ Вспомогательные равные треугольники ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные и описанные окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Стороны  BC = a,  AC = b,  AB = c  треугольника ABC образуют арифметическую прогрессию, причём  a < b < c.  Биссектриса угла B пересекает описанную окружность в точке B1. Докажите, что центр O вписанной окружности делит отрезок BB1 пополам.

Прислать комментарий     Решение

Задача 65361

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанный угол равен половине центрального ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9,10,11

Окружность, проходящая через вершины A, B и точку пересечения высот треугольника ABC, пересекает стороны AC и BC во внутренних точках.
Докажите, что  60° < ∠C < 90°.

Прислать комментарий     Решение

Задача 108180

Темы:   [ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
[ Угол между касательной и хордой ]
[ Вписанные четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4-
Классы: 8,9

Автор: Сонкин М.

Точки O1 и O2 – центры описанной и вписанной окружностей равнобедренного треугольника ABC  (AB = BC).  Описанные окружности треугольников ABC и O1O2A, пересекаются в точках A и D. Докажите, что прямая BD касается описанной окружности треугольника O1O2A.

Прислать комментарий     Решение

Задача 66236

Темы:   [ Треугольник (построения) ]
[ Отношение, в котором биссектриса делит сторону ]
[ Симметрия помогает решить задачу ]
[ Ромбы. Признаки и свойства ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 4
Классы: 9,10

Дан остроугольный треугольник ABC. Постройте на сторонах BC, CA, AB точки A', B', C' так, чтобы выполнялись следующие условия:
  - A'B' || AB;
  - C'C – биссектриса угла A'C'B';
  - A'C' + B'C' = AB.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 239]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .