ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах AB и BC треугольника ABC выбраны точки M и N соответственно. Отрезки AN и CM пересекаются в точке O, причём AO = CO. Обязательно ли треугольник ABC равнобедренный, если а) AM = CN; б) BM = BN? ![]() |
Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 1547]
Пусть O – центр описанной окружности треугольника ABC. На сторонах AB и BC выбраны точки M и N соответственно, причём 2∠MON = ∠AOC. Докажите, что периметр треугольника MBN не меньше стороны AC.
Серединный перпендикуляр к стороне AC треугольника ABC пересекает сторону BC в точке M. Биссектриса угла AMB пересекает описанную окружность треугольника ABC в точке K. Докажите, что прямая, проходящая через центры вписанных окружностей треугольников AKM и BKM, перпендикулярна биссектрисе угла AKB.
На сторонах AB и BC треугольника ABC выбраны точки M и N соответственно. Отрезки AN и CM пересекаются в точке O, причём AO = CO. Обязательно ли треугольник ABC равнобедренный, если а) AM = CN; б) BM = BN?
Среди всех четырёхугольников с данными диагоналями и данным углом между ними найдите четырёхугольник наименьшего периметра.
Дан прямоугольный бильярд со сторонами 1 и
Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 1547] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |