ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что из всех треугольников данного периметра 2p равносторонний имеет наибольшую плошадь.

   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 290]      



Задача 55725

Темы:   [ Поворот помогает решить задачу ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Треугольник (построения) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте равносторонний треугольник ABC так, чтобы его вершины лежали на трёх данных параллельных прямых.

Прислать комментарий     Решение


Задача 108044

Темы:   [ Поворот помогает решить задачу ]
[ Правильные многоугольники ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4
Классы: 8,9

Вершины правильного треугольника расположены на сторонах AB, CD и EF правильного шестиугольника ABCDEF.
Докажите, что эти треугольник и шестиугольник имеют общий центр.

Прислать комментарий     Решение

Задача 108484

Темы:   [ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Формула Герона ]
[ Неравенство Коши ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Докажите, что из всех треугольников данного периметра 2p равносторонний имеет наибольшую плошадь.

Прислать комментарий     Решение

Задача 109895

Темы:   [ Теория игр (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Правильный (равносторонний) треугольник ]
[ Шестиугольники ]
Сложность: 4
Классы: 7,8,9

Автор: Дужин Ф.С.



В одном из узлов шестиугольника со стороной n , разбитого на правильные треугольники (см. рис.) , стоит фишка. Двое играющих по очереди передвигают ее в один из соседних узлов, причем запрещается ходить в узел, в котором фишка уже побывала. Проигрывает тот, кто не может сделать хода. Кто выигрывает при правильной игре?
Прислать комментарий     Решение

Задача 108483

Темы:   [ Экстремальные свойства. Задачи на максимум и минимум. ]
[ Формула Герона ]
[ Неравенство Коши ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Докажите, что из всех треугольников данной площади равносторонний имеет наименьший периметр.

Прислать комментарий     Решение

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .