Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 157]
В треугольнике ABC ∠B = 36°, ∠C =
42°. На стороне BC взята точка M так, что BM = R, где R – радиус описанной окружности треугольника ABC.
Найдите угол MAC.
В треугольнике ABC серединные перпендикуляры к сторонам AB и BC пересекают сторону AC в точках P и Q соответственно, причём точка P лежит на отрезке AQ. Докажите, что описанные окружности треугольников PBC и QBA пересекаются на биссектрисе угла PBQ.
На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.
|
|
Сложность: 4 Классы: 9,10,11
|
Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ проходит через центр O треугольника ABC. Окружности Гb и Гc построены на отрезках BP и CQ как на диаметрах.
Докажите, что окружности Гb и Гc пересекаются в двух точках, одна из которых лежит на Ω, а другая – на ω.
|
|
Сложность: 4 Классы: 8,9,10
|
Неравнобедренный треугольник ABC, в котором ∠C = 60°, вписан в окружность Ω. На биссектрисе угла A выбрана точка A', а на биссектрисе угла B – точка B' так, что AB' || BC и B'A || AC. Прямая A'B' пересекает Ω в точках D и E. Докажите, что треугольник CDE равнобедренный.
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 157]