ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Существуют ли такие натуральные числа x и y, что x² + x + 1 является натуральной степенью y, а y² + y + 1 – натуральной степенью x? ![]() |
Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 2440]
Существуют ли такие натуральные числа x и y, что x² + x + 1 является натуральной степенью y, а y² + y + 1 – натуральной степенью x?
Натуральные числа m и n таковы, что НОК(m, n) + НОД(m, n) = m + n. Докажите, что одно из чисел m или n делится на другое.
Незнайка написал на доске несколько различных натуральных чисел и поделил (в уме) сумму этих чисел на их произведение. После этого Незнайка стёр самое маленькое число и поделил (опять в уме) сумму оставшихся чисел на их произведение. Второй результат оказался в 3 раза больше первого. Какое число Незнайка стёр?
Числа от 1 до 10 разбили на две группы так, что произведение чисел в первой группе нацело делится на произведение чисел во второй.
Даны 19 карточек. Можно ли на каждой из карточек написать ненулевую цифру так, чтобы из этих карточек можно было сложить ровно одно 19-значное число, кратное на 11?
Страница: << 126 127 128 129 130 131 132 >> [Всего задач: 2440] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |