Страница:
<< 8 9 10 11 12 13 14 [Всего задач: 70]
|
|
Сложность: 5- Классы: 9,10
|
В некотором царстве, территория которого имеет форму квадрата со стороной 2 км,
царь решает созвать всех жителей к 7 ч вечера к себе во дворец на бал. Для
этого он в полдень посылает с поручением гонца, который может передать любое
указание любому жителю, который в свою очередь может передать любое указание
любому другому жителю и т.д. Каждый житель до поступления указания находится в
известном месте (у себя дома) и может передвигаться со скоростью 3 км/ч в любом
направлении (по прямой). Доказать, что царь может организовать оповещение так,
чтобы все жители успели прийти к началу бала.
Костя посадил вдоль дорожки некоторое количество луковиц тюльпанов. Потом пришла Таня и между каждой парой соседних посаженных луковиц посадила новую луковицу. Потом пришла Инна и между каждой парой соседних луковиц, посаженных до неё, посадила новую луковицу. Потом пришёл Дима и сделал то же самое. Все посаженные луковицы взошли и расцвело 113 тюльпанов. Сколько луковиц посадил Костя?
|
|
Сложность: 3+ Классы: 10,11
|
Каковы первые четыре цифры числа 11 + 2² + 3³ + ... + 999999 + 10001000?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Единичный квадрат разбит на конечное число квадратиков (размеры которых могут
различаться). Может ли сумма периметров квадратиков, пересекающихся с главной
диагональю, быть больше 1993? (Если квадратик пересекается с диагональю по одной точке, это тоже считается пересечением.)
|
|
Сложность: 6 Классы: 9,10,11
|
Докажите, что существует такое натуральное число
n , что если правильный треугольник со стороной
n разбить прямыми, параллельными его сторонам, на
n2 правильных треугольников со стороной 1,
то среди вершин этих треугольников можно выбрать
1993
n точек, никакие три из которых не являются
вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного
треугольника).
Страница:
<< 8 9 10 11 12 13 14 [Всего задач: 70]