Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 418]
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что для любого натурального числа a1 > 1 существует такая возрастающая последовательность натуральных чисел a1, a2, a3, ...,
что
делится на a1 + a2 + ... + ak при всех k ≥ 1.
|
|
Сложность: 5- Классы: 7,8,9
|
Можно ли в клетках бесконечного клетчатого листа расставить натуральные числа таким образом, чтобы при любых натуральных m, n > 100 сумма чисел в любом прямоугольнике m×n клеток делилась на m + n?
|
|
Сложность: 5- Классы: 9,10,11
|
В бесконечной последовательности a1, a2, a3, ... число a1 равно 1,
а каждое следующее число an строится из предыдущего an–1 по правилу: если у числа n наибольший нечётный делитель имеет остаток 1 от деления на 4, то an = an–1 + 1, если же остаток равен 3, то an = an–1 – 1. Докажите, что в этой последовательности
а) число 1 встречается бесконечно много раз;
б) каждое натуральное число встречается бесконечно много раз.
(Вот первые члены этой последовательности: 1, 2, 1, 2, 3, 2, 1, 2, 3, 4, 3, ...)
|
|
Сложность: 5- Классы: 8,9,10,11
|
Дано конечное множество простых чисел P. Докажите, что найдётся такое натуральное число x , что оно представляется в виде x = ap + bp (с натуральными a, b) при всех p ∈ P и не представляется в таком виде для любого простого p ∉ P.
|
|
Сложность: 5 Классы: 9,10,11
|
Существует ли последовательность натуральных чисел, в которой каждое натуральное число встречается ровно один раз и при этом для любого k = 1, 2, 3, ... сумма первых k членов последовательности делится на k?
Страница:
<< 61 62 63 64
65 66 67 >> [Всего задач: 418]