Версия для печати
Убрать все задачи
Рассматривается произвольный многоугольник (возможно, невыпуклый).
а) Всегда ли найдётся хорда этого многоугольника, которая делит
его площадь пополам?
б) Докажите, что найдётся такая хорда, что площадь каждой из частей, на которые она разбивает многоугольник, не меньше чем ⅓ площади всего многоугольника.
в) Можно ли в пункте б) заменить число ⅓ на большее?
(Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур).

Решение
Треугольник
T содержится внутри выпуклого центрально-симметричного
многоугольника
M .
Треугольник
T' получается из треугольника
T
центральной симметрией относительно некоторой точки
P , лежащей внутри треугольника
T .
Докажите, что хотя бы одна из вершин треугольника
T' лежит
внутри или на границе многоугольника
M .

Решение