Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 354]
|
|
Сложность: 5 Классы: 9,10,11
|
В четырёхугольнике ABCD AB = BC, ∠A = ∠B = 20°, ∠C = 30°. Продолжение стороны AD пересекает BC в точке M, а продолжение стороны CD пересекает AB в точке N. Найдите угол AMN.
|
|
Сложность: 5 Классы: 9,10,11
|
Каждую вершину выпуклого четырехугольника площади
S отразили симметрично относительно диагонали, не
содержащей эту вершину. Обозначим площадь получившегося четырехугольника через
S' . Докажите, что
<3
.
Ковбой Джимми поспорил с друзьями, что сумеет одним выстрелом пробить все
четыре лопасти вертилятора. (Вертилятор устроен следующим образом: на оси,
вращающейся со скоростью 50 об/сек, расположены на равных расстояниях друг от
друга четыре полудиска, повернутые друг относительно друга под какими-то углами).
Джимми может стрелять в любой момент и добиваться произвольной скорости пуль.
Доказать, что Джимми выиграет пари.
|
|
Сложность: 5+ Классы: 8,9,10
|
Биссектриса
AD, медиана
BM и высота
CH остроугольного треугольника
ABC пересекаются в одной точке. Докажите, что величина угла
BAC больше 45°.
|
|
Сложность: 6- Классы: 9,10,11
|
Игрок на компьютере управляет лисой, охотящейся за двумя зайцами.
В вершине
A квадрата
ABCD находится нора: если в нее, в
отсутствие лисы, попадает хотя бы один заяц, то игра проиграна.
Лиса ловит зайца, как только оказывается с ним в одной точке
(возможно, в точке
A ). Вначале лиса сидит в точке
C , а
зайцы – в точках
B и
D . Лиса бегает повсюду со скоростью не
больше
v , а зайцы – по лучам
AB и
AD со скоростью не
больше 1. При каких значениях
v лиса сможет поймать
обоих зайцев?
Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 354]