ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Козлов П.

Докажите, что если натуральное число N представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.

   Решение

Задачи

Страница: << 162 163 164 165 166 167 168 >> [Всего задач: 2440]      



Задача 109194

Темы:   [ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 5-
Классы: 8,9,10

У ведущего есть колода из 52 карт. Зрители хотят узнать, в каком порядке лежат карты (при этом не уточняя   сверху вниз или снизу вверх). Разрешается задавать ведущему вопросы вида "Сколько карт лежит между такой-то и такой-то картами?". Один из зрителей подсмотрел, в каком порядке лежат карты. Какое наименьшее число вопросов он должен задать, чтобы остальные зрители по ответам на эти вопросы могли узнать порядок карт в колоде?

Прислать комментарий     Решение

Задача 109651

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 5-
Классы: 8,9,10

Найдите все такие тройки натуральных чисел m, n и l, что  m + n = (НОД(m, n))²,  m + l = (НОД(m, l))²,  n + l = (НОД(n, l))².

Прислать комментарий     Решение

Задача 110197

Темы:   [ Уравнения в целых числах ]
[ Неравенство Коши ]
[ Монотонность и ограниченность ]
Сложность: 5-
Классы: 8,9,10

Найдите все такие пары  (x, y)  натуральных чисел, что  x + y = an,  x² + y² = am  для некоторых натуральных a, n, m.

Прислать комментарий     Решение

Задача 110205

Темы:   [ Делимость чисел. Общие свойства ]
[ Тождественные преобразования ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 8,9,10

Автор: Козлов П.

Докажите, что если натуральное число N представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.

Прислать комментарий     Решение

Задача 66476

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Процессы и операции ]
Сложность: 5
Классы: 8,9,10,11

Назовем расстановку n единиц и m нулей по кругу хорошей, если в ней можно поменять местами соседние нуль и единицу так, что получится расстановка, отличающаяся от исходной поворотом. При каких натуральных n, m существует хорошая расстановка?
Прислать комментарий     Решение


Страница: << 162 163 164 165 166 167 168 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .