Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 144]
В треугольнике
ABC проведены медиана
CM и высота
CH.
Прямые, проведенные через произвольную точку
P плоскости
перпендикулярно
CA,
CM и
CB, пересекают прямую
CH
в точках
A1,
M1 и
B1. Докажите, что
A1M1 =
B1M1.
Два квадрата
BCDA и
BKMN имеют общую вершину
B.
Докажите, что медиана
BE треугольника
ABK и высота
BF
треугольника
CBN лежат на одной прямой. (Вершины
обоих квадратов перечислены по часовой стрелке.)
Постройте квадрат
ABCD , если даны его вершина
A и
расстояния от вершин
B и
D до фиксированной точки плоскости
O .
Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой
стрелке.)
На катетах CA и CB равнобедренного прямоугольного треугольника ABC выбраны точки D и E так, что CD = CE. Продолжения перпендикуляров, опущенных из точек D и C на прямую AE, пересекают гипотенузу AB в точках K и L. Докажите, что KL = LB.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 144]