Страница:
<< 74 75 76 77
78 79 80 >> [Всего задач: 402]
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что плоскость, проходящая через середины двух
противоположных рёбер любой треугольной пирамиды, делит её
объём пополам.
У двух треугольников равны наибольшие стороны и равны наименьшие углы.
Строится новый треугольник со сторонами, равными суммам соответствующих сторон
данных треугольников
(складываются наибольшие стороны двух треугольников,
средние по длине стороны и наименьшие стороны).
Докажите, что площадь нового треугольника не меньше удвоенной суммы площадей исходных.
Вписанная в треугольник ABC окружность ω касается сторонAB и AC в точках D и E соответственно. Пусть P – произвольная точка на большей дуге DE окружности ω, F – точка, симметричная точке A относительно прямой DP, M – середина отрезка DE. Докажите, что угол FMP – прямой.
Пусть I и IA – соответственно центры вписанной и вневписанной окружностей треугольника ABC. Прямая lA проходит через ортоцентры треугольников BIC и BIAC. Аналогичным образом определяются прямые lB и lC . Докажите, что прямые lA, lB и lC пересекаются в одной точке.
|
|
Сложность: 4 Классы: 10,11
|
На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой.
Страница:
<< 74 75 76 77
78 79 80 >> [Всего задач: 402]