Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 375]
В треугольнике
ABC угол
A равен
60
o . Пусть
BB1 и
CC1 —
биссектрисы этого треугольника. Докажите, что точка,
симметричная вершине A относительно прямой
B1C1 , лежит на стороне
BC .
|
|
Сложность: 5- Классы: 9,10,11
|
Четырёхугольник
ABCD вписан в окружность с
диаметром
AD ;
O — точка пересечения его диагоналей
AC и
BD является центром другой окружности, касающейся стороны
BC .
Из вершин
B и
С проведены касательные ко второй окружности,
пересекающиеся в точке
T . Докажите, что точка
T лежит на
отрезке
AD .
|
|
Сложность: 5 Классы: 10,11
|
а) Вписанная окружность треугольника ABC касается сторон AC и AB в точках B0 и C0 соответственно. Биссектрисы углов B и C треугольника ABC пересекают серединный перпендикуляр к биссектрисе AL в точках Q и P соответственно. Докажите, что прямые PC0 и QB0 пересекаются на прямой BC.
б) В треугольнике ABC провели биссектрису AL. Точки O1 и O2 – центры описанных окружностей треугольников ABL и ACL соответственно. Точки B1 и C1 – проекции вершин C и B на биссектрисы углов B и C соответственно. Докажите, что прямые O1C1 и O2B1 пересекаются на прямой BC.
в) Докажите, что точки, полученные в пп. а) и б), совпадают.
В выпуклом четырёхугольнике
ABCD точки
P и
Q –
середины диагоналей
AC и
BD соответственно. Прямая
PQ пересекает стороны
AB и
CD в точках
N и
M
соответственно. Докажите, что описанные окружности
треугольников
ANP ,
BNQ ,
CMP и
DMQ пересекаются
в одной точке.
|
|
Сложность: 5+ Классы: 9,10,11
|
Пусть ABC – остроугольный треугольник, в котором AC < BC; M – середина стороны AB. В описанной окружности Ω треугольника ABC, проведён диаметр CC'. Прямая CM пересекает прямые AC' и BC' в точках K и L соответственно. Перпендикуляр к прямой AC', проведённый через точку K, перпендикуляр к прямой BC', проведённый через точку L, и прямая AB образуют треугольник Δ. Докажите, что описанная окружность ω треугольника Δ касается окружности Ω.
Страница:
<< 64 65 66 67
68 69 70 >> [Всего задач: 375]