Страница:
<< 29 30 31 32 33
34 35 >> [Всего задач: 172]
|
|
Сложность: 5 Классы: 9,10,11
|
На плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)
Стороны треугольника равны 10, 17 и 21. Найдите
высоту треугольника, проведённую из вершины наибольшего
угла.
Точка D – середина гипотенузы AB прямоугольного треугольника ABC с катетами 3 и 4.
Найдите расстояние между центрами вписанных окружностей треугольников ACD и BCD.
Пусть p – полупериметр остроугольного треугольника ABC,
q – полупериметр треугольника, образованного основаниями его высот.
Докажите, что p : q = R : r, где R и r – радиусы описанной и вписанной окружностей треугольника ABC.
|
|
Сложность: 3+ Классы: 8,9,10
|
Правильный треугольник ABC вписан в окружность. Прямая l, проходящая через середину стороны AB и параллельная AC, пересекает дугу AB, не содержащую C, в точке K. Докажите, что отношение AK : BK равно отношению стороны правильного пятиугольника к его диагонали.
Страница:
<< 29 30 31 32 33
34 35 >> [Всего задач: 172]