ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из точки O на плоскости выходят 2n прямых. Могут ли они служить серединными перпендикулярами к сторонам некоторого 2n-угольника?
![]() ![]() Hа окружности с диаметром AB выбраны точки C и D. XY – диаметр, проходящий через середину K хорды CD. Tочка M – проекция точки X на прямую AC, а точка N – проекция точки Y на прямую BD. Докажите, что точки M, N и K лежат на одной прямой. ![]() ![]() |
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 375]
Hа окружности с диаметром AB выбраны точки C и D. XY – диаметр, проходящий через середину K хорды CD. Tочка M – проекция точки X на прямую AC, а точка N – проекция точки Y на прямую BD. Докажите, что точки M, N и K лежат на одной прямой.
Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.
Четырёхугольник ABCD без параллельных сторон вписан в окружность. Для каждой пары касающихся окружностей, одна из которых имеет хорду AB, а другая – хорду CD, отметим их точку касания X. Докажите, что все такие точки X лежат на одной окружности.
Две окружности пересекаются в точках A и B. Продолжения хорд AC и BD первой окружности пересекают вторую окружность в точках E и F. Докажите, что прямые CD и EF параллельны.
Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 375] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |