ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Стороны треугольника равны 17, 17, 30. Найдите радиусы вписанной и вневписанных окружностей.

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1024]      



Задача 109191

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
[ Прямоугольные треугольники (прочее) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9,10

В остроугольный треугольник вписана окружность радиуса R. К окружности проведены три касательные, разбивающие треугольник на три прямоугольных треугольника и шестиугольник. Периметр шестиугольника равен Q. Найдите сумму диаметров окружностей, вписанных в прямоугольные треугольники.

Прислать комментарий     Решение

Задача 110790

Темы:   [ Касающиеся окружности ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 7,8,9

Дана окружность радиуса R. Две другие окружности, сумма радиусов которых также равна R, касаются её изнутри.
Докажите, что прямая, соединяющая точки касания, проходит через одну из общих точек этих окружностей.

Прислать комментарий     Решение

Задача 115304

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Гомотетия помогает решить задачу ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 8,9

Прямая, проходящая через точку пересечения диагоналей трапеции ABCD параллельно основаниям BC и AD, пересекает сторону CD в точке K. Окружность проходит через вершины A и B трапеции, пересекает её основания BC и AD в точках X и Y соответственно и касается её стороны CD в точке K. Докажите, что прямая XY проходит через точку пересечения прямых AB и CD.

Прислать комментарий     Решение

Задача 115668

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

В выпуклом четырёхугольнике ABCD, диагонали которого пересекаются в точке O, равны между собой углы BAC и CBD, а также углы BCA и CDB. Докажите, что касательные, проведённые из точек B и C к описанной окружности треугольника AOD, равны.

Прислать комментарий     Решение

Задача 116362

Темы:   [ Две касательные, проведенные из одной точки ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Признаки подобия ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9,10

Стороны треугольника равны 17, 17, 30. Найдите радиусы вписанной и вневписанных окружностей.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .