ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Стороны треугольника равны 17, 17, 30. Найдите радиусы вписанной и вневписанных окружностей. ![]() |
Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1024]
В остроугольный треугольник вписана окружность радиуса R. К окружности проведены три касательные, разбивающие треугольник на три прямоугольных треугольника и шестиугольник. Периметр шестиугольника равен Q. Найдите сумму диаметров окружностей, вписанных в прямоугольные треугольники.
Дана окружность радиуса R. Две другие окружности, сумма радиусов которых также равна R, касаются её изнутри.
Прямая, проходящая через точку пересечения диагоналей трапеции ABCD параллельно основаниям BC и AD, пересекает сторону CD в точке K. Окружность проходит через вершины A и B трапеции, пересекает её основания BC и AD в точках X и Y соответственно и касается её стороны CD в точке K. Докажите, что прямая XY проходит через точку пересечения прямых AB и CD.
В выпуклом четырёхугольнике ABCD, диагонали которого пересекаются в точке O, равны между собой углы BAC и CBD, а также углы BCA и CDB. Докажите, что касательные, проведённые из точек B и C к описанной окружности треугольника AOD, равны.
Стороны треугольника равны 17, 17, 30. Найдите радиусы вписанной и вневписанных окружностей.
Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 1024] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |