Страница:
<< 70 71 72 73
74 75 76 >> [Всего задач: 418]
|
|
Сложность: 3+ Классы: 8,9,10
|
Последовательность чисел a1, a2, ... задана условиями a1 = 1, a2 = 143 и при всех n ≥ 2.
Докажите, что все члены последовательности – целые числа.
|
|
Сложность: 4- Классы: 8,9,10
|
Из чисел от 1 до 2n выбрано n + 1 число. Докажите, что среди выбранных чисел найдутся два, одно из которых делится на другое.
|
|
Сложность: 4- Классы: 9,10,11
|
Пять моряков высадились на остров и к вечеру набрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, угостил одним орехом мартышку, а из остальных орехов взял себе точно пятую часть, после чего лёг спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях предшественников. На утро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Каким могло
быть наименьшее число орехов в собранной куче?
|
|
Сложность: 4- Классы: 8,9,10
|
Для каждого натурального числа n обозначим через O(n) его наибольший нечётный делитель. Даны произвольные натуральные числа
х1 = а и х2 = b. Построим бесконечную последовательность натуральных чисел по правилу: xn = O(хn–1 + хn–2), где n = 3, 4, ... .
а) Докажите, что, начиная с некоторого места, все числа в последовательности будут равны одному и тому же числу.
б) Как найти это число, зная числа a и b?
|
|
Сложность: 4- Классы: 10,11
|
Найдите все возрастающие арифметические прогрессии с конечным числом членов, сумма которых равна 1, а каждый член имеет вид 1/k, где k натуральное.
Страница:
<< 70 71 72 73
74 75 76 >> [Всего задач: 418]