ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.

   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 66777

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Тангенсы и котангенсы углов треугольника ]
Сложность: 3
Классы: 8,9,10,11

В остроугольном треугольнике $ABC$ $A_M$ – середина стороны $BC$, $A_H$ – основание высоты, опущенной на эту сторону. Аналогично определяются точки $B_M$, $B_H$, $C_M$, $C_H$. Докажите, что одно из отношений $A_MA_H:A_HA$, $B_MB_H:B_HB$, $C_MC_H:C_HC$ равно сумме двух других.
Прислать комментарий     Решение


Задача 66017

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательная окружность ]
[ Теорема синусов ]
[ Медиана, проведенная к гипотенузе ]
[ Удвоение медианы ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 9,10,11

Автор: Обухов Б.

В остроугольном треугольнике ABC проведены медиана AM и высота BH. Перпендикуляр, восстановленный в точке M к прямой AM, пересекает луч HB в точке K. Докажите, что если  ∠MAC = 30°,  то  AK = BC.

Прислать комментарий     Решение

Задача 65937

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Прямая Эйлера и окружность девяти точек ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 9,10

Авторы: Заславский А.А., Френкин Б.Р.

В остроугольном неравностороннем треугольнике отметили четыре точки: центры вписанной и описанной окружностей, точку пересечения медиан и ортоцентр. Затем сам треугольник стерли. Оказалось, что невозможно установить, какому центру соответствует каждая из отмеченных точек. Найдите углы треугольника.

Прислать комментарий     Решение

Задача 116912

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Ортоцентр и ортотреугольник ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 9,10

Авторы: Заславский А.А., Френкин Б.Р.

Точку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.

Прислать комментарий     Решение

Задача 73583

Темы:   [ Замечательные точки и линии в треугольнике (прочее) ]
[ Неравенства для углов треугольника ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 5+
Классы: 8,9,10

Биссектриса AD, медиана BM и высота CH остроугольного треугольника ABC пересекаются в одной точке. Докажите, что величина угла BAC больше 45°.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .