ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Центр О окружности, описанной около четырёхугольника АВСD, лежит внутри него. Найдите площадь четырёхугольника, если ∠ВАО = ∠DAC, |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 496]
Четырёхугольник ABCD без параллельных сторон вписан в окружность. Для каждой пары касающихся окружностей, одна из которых имеет хорду AB, а другая – хорду CD, отметим их точку касания X. Докажите, что все такие точки X лежат на одной окружности.
В окружность Ω вписан четырёхугольник ABCD, диагонали AC и BD которого перпендикулярны. На сторонах AB и CD во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны.
Центр О окружности, описанной около четырёхугольника АВСD, лежит внутри него. Найдите площадь четырёхугольника, если ∠ВАО = ∠DAC,
Две окружности пересекаются в точках A и B. Продолжения хорд AC и BD первой окружности пересекают вторую окружность в точках E и F. Докажите, что прямые CD и EF параллельны.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 496] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|