ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n.

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 328]      



Задача 30781

Темы:   [ Степень вершины ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 7,8

Докажите, что существует граф с 2n вершинами, степени которых равны 1, 1, 2, 2, ..., n, n.

Прислать комментарий     Решение

Задача 30905

Темы:   [ Алгебраические неравенства (прочее) ]
[ Показательные неравенства ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 6,7

Какое из чисел     (10 двоек) или     (9 троек) больше? А если троек не 9, а 8?

Прислать комментарий     Решение

Задача 35713

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что число    делится на 2k и не делится на 2k+1.

Прислать комментарий     Решение

Задача 35739

Темы:   [ Задачи на смеси и концентрации ]
[ Инварианты и полуинварианты ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

Имеется два стакана, в первом стакане налито некоторое количество воды, а во втором – такое же количество спирта. Разрешается переливать некоторое количество жидкости из одного стакана в другой (при этом раствор равномерно перемешивается). Можно ли с помощью таких операций получить в первом стакане раствор, в котором процентное содержание спирта больше, чем во втором?

Прислать комментарий     Решение

Задача 60488

 [Алгоритм Евклида]
Темы:   [ НОД и НОК. Взаимная простота ]
[ Алгоритм Евклида ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10

  а) Пусть m0 и m1 – целые числа,  0 < m1m0.  Докажите, что при некотором  k > 1  существуют такие целые числа a0, a1, ..., ak и m2, ..., mk, что
m1 > m2 > m3 > ... > mk > 0,  ak > 1,
  m0 = m1a0 + m2,
  m1 = m2a1 + m3,
  m2 = m3a2 + m4,
    ...
  mk–2 = mk–1ak–1 + mk,
  mk–1 = mkak,
и  (m0, m1) = mk.

  б) Докажите, что для любого s от  k – 1  до 0 существуют такие числа us, vs, что   msus + ms+1vs = d,   где  d = (m0, m1).
  В частности, для некоторых u и v выполняется равенство  m0u + m1v = d.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 328]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .