Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 368]
|
|
Сложность: 4- Классы: 7,8,9
|
Натуральное число n назовём хорошим, если каждое из чисел n, n + 1, n + 2 и n + 3 делится на сумму своих цифр. (Например, n = 60398 – хорошее.)
Обязательно ли предпоследней цифрой хорошего числа, оканчивающегося восьмеркой, будет девятка?
|
|
Сложность: 4- Классы: 9,10,11
|
Докажите, что для любого многочлена P с целыми коэффициентами и любого натурального k существует такое натуральное n, что P(1) + P(2) + ... + P(n) делится на k.
|
|
Сложность: 4- Классы: 10,11
|
Назовём натуральное число хорошим, если все его цифры ненулевые. Хорошее число назовём особым, если в нём хотя бы k разрядов и цифры идут в порядке строгого возрастания (слева направо).
Пусть имеется некое хорошее число. За ход разрешается приписать с любого края или вписать между любыми его двумя цифрами особое число или же, наоборот, стереть в его записи особое число. При каком наибольшем k можно из каждого хорошего числа получить любое другое хорошее число с помощью таких ходов?
|
|
Сложность: 4 Классы: 9,10,11
|
Каждое ли целое число можно записать как сумму кубов нескольких целых чисел, среди которых нет одинаковых?
[Теорема Эйлера]
|
|
Сложность: 4 Классы: 9,10,11
|
Теорема Эйлера. Пусть m ≥ 1 и (a,
m) = 1. Тогда aφ(m) ≡ 1 (mod m).
Докажите теорему Эйлера с помощью малой теоремы Ферма
а) в случае, когда m = pn;
б) в общем случае.
Страница:
<< 65 66 67 68
69 70 71 >> [Всего задач: 368]