ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно.
б) Верно ли это для замкнутых ломаных, нарисованных на поверхности оконной рамы?

   Решение

Задачи

Страница: << 157 158 159 160 161 162 163 >> [Всего задач: 2440]      



Задача 30670

Тема:   [ Уравнения в целых числах ]
Сложность: 4+
Классы: 8,9,10,11

Решите уравнение  x² – 5y² = 1  в целых числах.

Прислать комментарий     Решение

Задача 32949

 [Индекс пересечения]
Темы:   [ Четность и нечетность ]
[ Шахматная раскраска ]
Сложность: 4+
Классы: 8,9,10

а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно.
б) Верно ли это для замкнутых ломаных, нарисованных на поверхности оконной рамы?

Прислать комментарий     Решение

Задача 58166

 [Лемма Шпернера]
Тема:   [ Четность и нечетность ]
Сложность: 4+
Классы: 8,9

Вершины треугольника помечены цифрами 0, 1 и 2. Этот треугольник разбит на несколько треугольников таким образом, что никакая вершина одного треугольника не лежит на стороне другого. Вершинам исходного треугольника оставлены старые пометки, а дополнительные вершины получают номера 0, 1, 2, причём каждая вершина на стороне исходного треугольника должна быть помечена одной из пометок вершин этой стороны (см. рис.). Докажите, что существует треугольник разбиения, помеченный цифрами 0, 1, 2.

Прислать комментарий     Решение

Задача 60526

Тема:   [ Уравнения в целых числах ]
Сложность: 4+
Классы: 9,10,11

Пусть натуральные числа $a$ и $b$ взаимно просты. Докажите, что для того, чтобы уравнение  $ax + by = c$  имело ровно $n$ целых положительных решений, значение $c$ должно находиться в пределах  $(n - 1) \cdot ab + a + b \leqslant c \leqslant (n + 1) \cdot ab.$

Прислать комментарий     Решение

Задача 60527

Темы:   [ Уравнения в целых числах ]
[ Центральная симметрия ]
[ Системы точек ]
Сложность: 4+
Классы: 9,10,11

Отметим на прямой красным цветом все точки вида  81x + 100y,  где x, y – натуральные, и синим цветом – остальные целые точки.
Найдите на прямой такую точку, что любые симметричные относительно неё целые точки окрашены в разные цвета.

Прислать комментарий     Решение

Страница: << 157 158 159 160 161 162 163 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .