ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Для какого наибольшего n можно придумать две бесконечные в обе стороны последовательности A и B такие, что любой кусок последовательности B длиной n содержится в A, A имеет период 1995, а B этим свойством не обладает (непериодична или имеет период другой длины)? Комментарий. Последовательности могут состоять из произвольных символов. Речь идет о минимальном периоде.
![]() ![]() Тождество Кассини. Докажите равенство
Fn + 1Fn - 1 - Fn2 = (- 1)n (n > 0).
Будет ли тождество Кассини справедливо для всех целых n? ![]() ![]() ![]() Натуральный ряд 1, 2, 3, ... разбит на несколько (конечное число) арифметических прогрессий. ![]() ![]() |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 192]
Васе на 23 февраля подарили 777 конфет. Вася хочет съесть все конфеты за n дней, причем так, чтобы каждый из этих дней (кроме первого, но включая последний) съедать на одну конфету больше, чем в предыдущий. Для какого наибольшего числа n это возможно?
Натуральный ряд разбит на n арифметических прогрессий (каждое натуральное число принадлежит ровно одной из этих n прогрессий). Пусть d1, d2, ..., dn – разности этих прогрессий. Докажите, что 1/d1 + 1/d2 + ... + 1/dn = 1.
Натуральный ряд 1, 2, 3, ... разбит на несколько (конечное число) арифметических прогрессий.
Докажите, что в любой арифметической прогрессии, состоящей из натуральных чисел, найдутся два члена с одинаковой суммой цифр.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 192] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |