ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дано 16 кубов с длинами рёбер соответственно 1, 2, ..., 16. Разделите их на две группы так, чтобы в обеих группах были равны суммарные объёмы, суммы площадей боковых поверхностей, суммы длин рёбер и количество кубов.

   Решение

Задачи

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 411]      



Задача 30806

Темы:   [ Обход графов ]
[ Деревья ]
[ Четность и нечетность ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9

Докажите, что связный граф, имеющий не более двух нечётных вершин, можно нарисовать, не отрывая карандаша от бумаги и проводя каждое ребро ровно один раз.

Прислать комментарий     Решение

Задача 32088

Темы:   [ Свойства коэффициентов многочлена ]
[ Рациональные и иррациональные числа ]
[ Целочисленные и целозначные многочлены ]
[ Индукция (прочее) ]
[ Интерполяционный многочлен Лагранжа ]
[ Интерполяционный многочлен Ньютона ]
Сложность: 4
Классы: 8,9,10

Известно, что некоторый многочлен в рациональных точках принимает рациональные значения.
Докажите, что все его коэффициенты рациональны.

Прислать комментарий     Решение

Задача 35228

Темы:   [ Арифметическая прогрессия ]
[ Куб ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Дано 16 кубов с длинами рёбер соответственно 1, 2, ..., 16. Разделите их на две группы так, чтобы в обеих группах были равны суммарные объёмы, суммы площадей боковых поверхностей, суммы длин рёбер и количество кубов.

Прислать комментарий     Решение

Задача 58106

Темы:   [ Формула включения-исключения ]
[ Сочетания и размещения ]
[ Перегруппировка площадей ]
[ Индукция в геометрии ]
Сложность: 4
Классы: 9,10,11

На плоскости дано n фигур. Пусть Si1...ik – площадь пересечения фигур с номерами i1, ..., ik, a S – площадь части плоскости, покрытой данными фигурами; Mk – сумма всех чисел Si1...ik. Докажите, что:
  а)  S = M1M2 + M3 – ... + (–1)n + 1Mn;
  б)  SM1 - M2 + M3 – ... + (–1)m + 1Mm   при m чётном и
       SM1M2 + M3 – ... + (–1)m + 1Mm   при m нечётном.

Прислать комментарий     Решение

Задача 64722

Темы:   [ Обход графов ]
[ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Пахарев А.

Дано несколько белых и несколько чёрных точек. Из каждой белой точки идет стрелка в каждую чёрную, на каждой стрелке написано натуральное число. Известно, что если пройти по любому замкнутому маршруту, то произведение чисел на стрелках, идущих по направлению движения, равно произведению чисел на стрелках, идущих против направления движения. Обязательно ли можно поставить в каждой точке натуральное число так, чтобы число на каждой стрелке равнялось произведению чисел на её концах?

Прислать комментарий     Решение

Страница: << 69 70 71 72 73 74 75 >> [Всего задач: 411]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .