ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две окружности пересекаются в точках A и B. Продолжения хорд AC и BD первой окружности пересекают вторую окружность в точках E и F. Докажите, что прямые CD и EF параллельны.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 496]      



Задача 116715

Темы:   [ Вписанные четырехугольники (прочее) ]
[ ГМТ - окружность или дуга окружности ]
[ Радикальная ось ]
Сложность: 3+
Классы: 10,11

Автор: Фольклор

Четырёхугольник ABCD без параллельных сторон вписан в окружность. Для каждой пары касающихся окружностей, одна из которых имеет хорду AB, а другая – хорду CD, отметим их точку касания X. Докажите, что все такие точки X лежат на одной окружности.

Прислать комментарий     Решение

Задача 116915

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Экстремальные свойства окружности и криволинейных фигур ]
Сложность: 3+
Классы: 9,10

Автор: Нилов Ф.

В окружность Ω вписан четырёхугольник ABCD, диагонали AC и BD которого перпендикулярны. На сторонах AB и CD во внешнюю сторону как на диаметрах построены дуги α и β. Рассмотрим две луночки, образованные окружностью Ω и дугами α и β (см. рис.). Докажите, что максимальные радиусы окружностей, вписанных в эти луночки, равны.

Прислать комментарий     Решение

Задача 116989

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Площадь четырехугольника ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Центр О окружности, описанной около четырёхугольника АВСD, лежит внутри него. Найдите площадь четырёхугольника, если  ∠ВАО = ∠DAC,
AC = m,  BD = n
.

Прислать комментарий     Решение

Задача 35001

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC, CA треугольника ABC выбраны соответственно точки C', A', B'. Докажите, что описанные окружности треугольников AB'C', BC'A', CA'B' проходят через одну точку.
Прислать комментарий     Решение


Задача 52363

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанный угол ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках A и B. Продолжения хорд AC и BD первой окружности пересекают вторую окружность в точках E и F. Докажите, что прямые CD и EF параллельны.

Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .