ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Отрезки AB и CD — диаметры одной окружности. Из точки M этой окружности опущены перпендикуляры MP и MQ на прямые AB и CD. Докажите, что длина отрезка PQ не зависит от положения точки M. Решение |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 523]
В окружности с центром в точке O проведены два диаметра AB и CD так, что угол AOC = . Из точки M, лежащей на окружности и отличной от точек A, B, C и D, проведены к диаметрам AB и CD перпендикуляры MQ и MP соответственно (точка Q лежит на AB, а точка P на CD) так, что MPQ = . Найдите отношение площади треугольника MPQ к площади круга.
Отрезки AB и CD — диаметры одной окружности. Из точки M этой окружности опущены перпендикуляры MP и MQ на прямые AB и CD. Докажите, что длина отрезка PQ не зависит от положения точки M.
Через вершины A и B треугольника ABC проходит окружность радиуса r, пересекающая сторону BC в точке D. Найдите радиус окружности, проходящей через точки A, D и C, если AB = c и AC = b.
Окружность радиуса R проходит через вершины A и B треугольника ABC и касается прямой AC в точке A. Найдите площадь треугольника ABC, зная, что ABC = , CAB = .
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 523] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|