ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если диагонали четырехугольника перпендикулярны, то проекции точки пересечения диагоналей на стороны являются вершинами вписанного четырехугольника. ![]() ![]() В треугольнике ABC угол C — тупой. На стороне AB отмечены точки E и H, на сторонах AC и BC — точки K и M соответственно. Оказалось, что AH = AC, BE = BC, AE = AK, BH = BM. Докажите, что точки E, H, K, M лежат на одной окружности.
![]() ![]() |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 374]
Дана неравнобокая трапеция ABCD (AB || CD). Окружность, проходящая через точки A и B, пересекает боковые стороны трапеции в точках P и Q, а диагонали – в точках M и N. Докажите, что прямые PQ, MN и CD пересекаются в одной точке.
На сторонах AB и BC треугольника ABC выбраны соответственно точки C1 и A1, отличные от вершин. Пусть K – середина A1C1, а I – центр окружности, вписанной в треугольник ABC. Оказалось, что четырёхугольник A1BC1I вписанный. Докажите, что угол AKC тупой.
На сторонах AB и CD квадрата ABCD взяты точки K и M соответственно, а на диагонали AC – точка L так, что ML = KL. Пусть P – точка пересечения отрезков MK и BD. Найдите угол KPL.
В треугольнике ABC угол C — тупой. На стороне AB отмечены точки E и H, на сторонах AC и BC — точки K и M соответственно. Оказалось, что AH = AC, BE = BC, AE = AK, BH = BM. Докажите, что точки E, H, K, M лежат на одной окружности.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 374] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |