ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости даны прямая l и две точки A и B по одну сторону от неё. На прямой l выбраны точка M, сумма расстояний от которой до точек A и B наименьшая, и точка N, для которой  AN = BN.  Докажите, что точки A, B, M, N лежат на одной окружности.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 1026]      



Задача 67168

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Комбинаторика (прочее) ]
[ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Сто сидений карусели расположены по кругу через равные промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья одного и того же цвета расположены подряд и пронумерованы 1, 2, 3, ... по часовой стрелке. Синее сиденье № 7 противоположно красному № 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели жёлтых сидений, сколько синих и сколько красных.
Прислать комментарий     Решение


Задача 35203

Темы:   [ Поворот на $90^\circ$ ]
[ Выпуклые многоугольники ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 9,10

Выпуклый многоугольник M переходит в себя при повороте на угол 900. Докажите, что найдутся два круга с отношением радиусов, равным 21/2, один из которых содержит M, а другой - содержится в M.
Прислать комментарий     Решение


Задача 52489

Темы:   [ Симметрия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Четыре точки, лежащие на одной окружности ]
[ Наибольшая или наименьшая длина ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

На плоскости даны прямая l и две точки A и B по одну сторону от неё. На прямой l выбраны точка M, сумма расстояний от которой до точек A и B наименьшая, и точка N, для которой  AN = BN.  Докажите, что точки A, B, M, N лежат на одной окружности.

Прислать комментарий     Решение

Задача 55164

Темы:   [ Симметрия помогает решить задачу ]
[ Неравенство треугольника ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что  MA + MB > CA + CB.

Прислать комментарий     Решение

Задача 55574

Темы:   [ Свойства симметрий и осей симметрии ]
[ Произвольные многоугольники ]
Сложность: 3+
Классы: 8,9

Докажите, что ось симметрии  а) треугольника,  б) (2k+1)-угольника проходит через его вершину.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 1026]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .