ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что в любом треугольнике ABC середина стороны BC лежит на отрезке, соединяющем точку пересечения высот с точкой окружности, описанной около этого треугольника, диаметрально противоположной вершине A, и делит этот отрезок пополам.

   Решение

Задачи

Страница: << 137 138 139 140 141 142 143 >> [Всего задач: 2247]      



Задача 52376

Темы:   [ Вписанный четырехугольник с перпендикулярными диагоналями ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

В окружность вписан четырёхугольник MNPQ, диагонали которого взаимно перпендикулярны и пересекаются в точке F. Прямая, проходящая через точку F и середину стороны NP, пересекает сторону MQ в точке H. Докажите, что FH — высота треугольника MFQ и найдите её длину, если PQ = 6, NF = 5, $ \angle$MQN = $ \alpha$.

Прислать комментарий     Решение


Задача 52389

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Точка Микеля ]
Сложность: 4
Классы: 8,9

Докажите, что окружности, описанные около трёх треугольников, отсекаемых от остроугольного треугольника средними линиями, имеют общую точку.

Прислать комментарий     Решение


Задача 52510

Темы:   [ Признаки и свойства параллелограмма ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4
Классы: 8,9

Докажите, что в любом треугольнике ABC середина стороны BC лежит на отрезке, соединяющем точку пересечения высот с точкой окружности, описанной около этого треугольника, диаметрально противоположной вершине A, и делит этот отрезок пополам.

Прислать комментарий     Решение


Задача 52781

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Теорема косинусов ]
Сложность: 4
Классы: 8,9

Трапеция ABCD с основаниями BC = 2 и AD = 10 такова, что в неё можно вписать окружность и около неё можно описать окружность. Определите, где находится центр описанной окружности, т.е. расположен он внутри или вне её, или же на одной из сторон трапеции ABCD. Найдите также отношение радиусов описанной и вписанной окружностей.

Прислать комментарий     Решение


Задача 52849

Темы:   [ Средняя линия трапеции ]
[ Признаки и свойства касательной ]
Сложность: 4
Классы: 8,9

Окружность, построенная на основании AD трапеции ABCD как на диаметре, проходит через середины боковых сторон AB и CD трапеции и касается основания BC. Найдите углы трапеции.

Прислать комментарий     Решение


Страница: << 137 138 139 140 141 142 143 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .