ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольник вписана окружность радиуса 3. Найдите стороны треугольника, если одна из них разделена точкой касания на отрезки, равные 4 и 3. Решение |
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 501]
Даны точки A(- 2;0), B(1;6), C(5;4) и D(2; - 2). Докажите, что четырехугольник ABCD — прямоугольник.
Даны точки A(- 1;3), B(1; - 2), C(6;0) и D(4;5). Докажите, что четырёхугольник ABCD — квадрат.
Даны две окружности. Их общие внутренние касательные взаимно перпендикулярны. Хорды, соединяющие точки касания, равны 3 и 5. Найдите расстояние между центрами окружностей.
В треугольник вписана окружность радиуса 3. Найдите стороны треугольника, если одна из них разделена точкой касания на отрезки, равные 4 и 3.
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|