ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В ромбе ABCD из вершины B на сторону AD опущен перпендикуляр BE. Найдите углы ромба, если 2$ \sqrt{3}$CE = $ \sqrt{7}$AC.

   Решение

Задачи

Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 501]      



Задача 115724

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Точки P и Q лежат на сторонах соответственно BC и CD квадрата ABCD, причём треугольник APQ – равносторонний. Прямая, проходящая через точку P перпендикулярно стороне AQ, пересекает AD в точке E. Точка F расположена вне треугольника APQ, причём треугольники PQF и AQE равны.
Докажите, что  FE = 2FC.

Прислать комментарий     Решение

Задача 53545

Темы:   [ Средняя линия треугольника ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Ромбы. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Докажите, что если отрезки, соединяющие середины противоположных сторон четырёхугольника,

а) равны, то диагонали четырёхугольника перпендикулярны;

б) перпендикулярны, то диагонали четырёхугольника равны.

Прислать комментарий     Решение


Задача 53283

Темы:   [ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Ромбы. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

В ромбе ABCD из вершины B на сторону AD опущен перпендикуляр BE. Найдите углы ромба, если 2$ \sqrt{3}$CE = $ \sqrt{7}$AC.

Прислать комментарий     Решение


Задача 57919

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

На сторонах BC и CD квадрата ABCD взяты точки M и K соответственно, причем $ \angle$BAM = $ \angle$MAK. Докажите, что BM + KD = AK.
Прислать комментарий     Решение


Задача 111710

Темы:   [ Поворот на $90^\circ$ ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Четырехугольники (построения) ]
Сложность: 4-
Классы: 8,9

Постройте квадрат ABCD , если даны его вершина A и расстояния от вершин B и D до фиксированной точки плоскости O .
Прислать комментарий     Решение


Страница: << 82 83 84 85 86 87 88 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .